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Abstract

This poster proposes an integrated pipeline to estimate hemoglobin and glucose levels from smartphone PPG signals extracted from fingertip videos, consisting of five specialized modules. Firstly, using Frame Extraction Module, the system records 10-
second fingertip video using smartphone's camera. Therefore, it extracts 300 frames from 10-second fingertip video. Then, PPG Signal Module takes the input series of frames and applies our developed PPG signal generation algorithm to identify the
region of interest and calculate the PPG value for each frame. Then, PPG signal is generated from the RED channel and applied Butterworth bandpass filter to reduce motion artifacts. After that, PPG Features Module extracts characteristic features from
the PPG signal, its derivative, and Fourier-transformed signals. Furthermore, Estimation Module measures blood components from extracted features using deep neural models. Finally, a Result Presenting Module, it sends results to the end-user using a

smartphone-based application.
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